Mining Implicit Correlations between Users with the Same Role for Trust-Aware Recommendation
نویسندگان
چکیده
Trust as one of important social relations has attracted much attention from researchers in the field of social network-based recommender systems. In trust network-based recommender systems, there exist normally two roles for users, truster and trustee. Most of trust-based methods generally utilize explicit links between truster and trustee to find similar neighbors for recommendation. However, there possibly exist implicit correlations between users, especially for users with the same role (truster or trustee). In this paper, we propose a novel Collaborative Filtering method called CF-TC, which exploits Trust Context to discover implicit correlation between users with the same role for recommendation. In this method, each user is first represented by the same-role users who are co-occurring with the user. Then, similarities between users with the same role are measured based on obtained user representation. Finally, two variants of our method are proposed to fuse these computed similarities into traditional collaborative filtering for rating prediction. Using two publicly available real-world Epinions and Ciao datasets, we conduct comprehensive experiments to compare the performance of our proposed method with some existing benchmark methods. The results show that CF-TC outperforms other baseline methods in terms of RMSE, MAE, and recall.
منابع مشابه
A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملTrust-aware Collaborative Denoising Auto-Encoder for Top-N Recommendation
Both feedback of ratings and trust relationships can be used to reveal user preference to improve recommendation performance, especially for cold users. However, the high-order correlations between tow kind of data are always ignored by existing works. Towards this problem, we propose a Correlative Denoising Autoencoder (CoDAE) model to learn correlations from both rating and trust data for Top...
متن کاملTrust Aware Recommender Systems: A Survey on Implicit Trust Generation Techniques
Development of Web 2.0 enabled users to share information online, which results into an exponential growth of world wide web data. This leads to the so-called information overload problem. Recommender Systems (RS) are intelligent systems, helping on-line users to overcome information overload by providing customized recommendations on various items. In real world, people are willing to take adv...
متن کاملExtracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction
Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- TIIS
دوره 9 شماره
صفحات -
تاریخ انتشار 2015